我的位置 首页  >  新闻动态  >  国内新闻

除改变效率低下、创新迟缓问题外 AI技术还能攻克哪些医疗难题?

来源:科技成果转化中心时间:2018-06-29
      

HC3i

医疗人订阅首选!(点击蓝字关注)


HC3i导读:

    

随着人工智能与大量医疗数据结合使用,新药的研发将更加便宜和迅速,同时更加智能化。我所了解的该领域最热门的创业公司之一是 Insilico Medicine,利用人工智能在其端到端的药物管道中,通过对药物的研究,从而讨论未来长寿与健康的秘诀。


在 2018 年,仅前十大制药公司将创造超过三千亿美元的收入。与此同时,目前需要 10 年时间才能将新药推向市场,同时花费超过 25 亿美元(有时高达 120 亿美元)。即使进入 I 期临床试验的 10 种药物中,有 9 种不会进入市场。

随着人口老龄化,我们无法依赖这种低成功率、高成本的方式。到 2030 年,世界人口中约有 12% 的人口年龄在 65 岁及以上,像老年痴呆这样的「衰老疾病」将对社会构成越来越大的挑战。

随着人工智能与大量医疗数据结合使用,新药的研发将更加便宜和迅速,同时更加智能化。我所了解的该领域最热门的创业公司之一是 Insilico Medicine,利用人工智能在其端到端的药物管道中,通过对药物的研究,从而讨论未来长寿与健康的秘诀。

案例研究:利用 AI 进行药物探索

你可能已经了解过深度神经网络:人造神经元的多层网络,能够从大量数据中「学习」并且能够为自己做基本的编程。

建立在深度神经网络的基础上,将生成对抗网络(GAN),这是支持 Insilico 药物发现渠道的革命性技术。

什么是 GAN?「GAN 技术本质上是两个深层神经网络之间的敌对博弈,」Alex 解释说。

Alex 的最终目标是开发一个全自动的健康即服务(HaaS)/长寿服务(LaaS)引擎。一旦插入阿里巴巴公司到 Alphabet 公司的服务,这种引擎将为在线用户提供个性化解决方案,帮助他们预防疾病并保持最佳健康。

Insilico 的端到端管道

首先,Insilico 利用 AI(以 GAN 的形式)来确定目标(如下面的管道的第一阶段所示)。为此,Insilico 使用来自健康组织样本和受疾病影响者的基因表达数据。(目标是药物打算作用的特定病理学中涉及的细胞或分子结构。)

仅此一项就可以实现医疗保健和医学研究的突破。但真正作用并不止于此。

在了解衰老过程中潜在的机制和因果关系之后,Insilico 使用 GAN 来「想象」新的分子结构。通过强化学习,Insilico 的系统以前所未有的方式识别目标,然后从头生成自定义分子,从而达到这些特定目标。

在规模上,这也将涉及药物的副作用最小化,这是 Insilico 科学家 Polina Mamoshina 与牛津大学计算心血管团队合作开展的一项研究。

虽然仍处于发展的早期阶段,但准确的临床试验预测指标将使研究人员能够确定理想的临床前候选人。

从今天的情况来看,这是对于行业效率 10 倍的改善。

目前,通过传统技术发现并在小鼠身上测试的超过 90%的分子最终在人类临床试验中失败。准确的临床试验预测结果将导致药物测试成本,时间和开销大大削减。

药物发现

药物发现的数字化和非物质化变革已经发生。机器学习推动药物发现和分子生物学方面产生突破性进展,随着计算能力的提高,将以更低的成本,更惊人的速度向市场推出新的治疗方案,并且不需要大规模的基础设施建设和投资。

除量子计算的预期突破之外,我们将很快见证可预测分子数量的爆炸式增长,同时准确性大幅提升。

总结

人工智能技术的发展将在未来改变医疗行业效率低下、创新迟缓的问题。无论处于何种行业的人,大制药都是一个值得关注的领域。融合技术很快能够在长寿和疾病预防方面取得长足的进步,像 Insilico 这样的创业公司领导着行业变革。

在大规模数据集、不断提升的计算能力、量子计算、区块链及人工智能的等创新因素推动下,人类的健康状况及长寿的未来确实值得期待。

技术将比人类想象力更快的实现商业化,当询问 Alex 对行业的预期时,他的时间安排是二十年。

可能他的预测是保守的。

我的朋友 Ray Kurzweil 经常讨论「长寿逃逸速度」这个概念,即在你活着的每一年,科学都能够延长你的寿命超过一年。

Ray 的预测准确率达到了 86%,「这可能仅仅是大众还需要 10 到 12 年才能达到长寿逃跑速度。」

你将怎样使用生活中额外的 20 年或更多的健康年?

来源:机器之能

Insilico Medicine介绍

Insilico Medicine公司成立于2014年,宗旨是延长人类的健康寿命。为此,该公司收集了大量不同年龄的健康和患病人群的多类组学数据(multi-omics data),并且利用机器学习对这些数据进行综合分析,从中找出与衰老和疾病有关的生物标记物,并且根据这些数据寻找上市药物的新功能,发现新的抗衰老药物。该公司的另一项业务是与研究所和制药公司合作,利用自身对深度神经网络机器学习的专长,帮助它们进行药物研发、发现生物标记物和开发研究衰老的新工具。该公司与世界上150多个机构建立了合作关系。

 这里有料有看头!☟

       (科技成果转化中心供稿)